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Spin-orbit coupling and time-reversal symmetry in quantum gates
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We study the effect of spin-orbit coupling on quantum gates produced by pulsing the exchange interaction
between two single-electron quantum dots. Spin-orbit coupling enters as a small spin precession when elec-
trons tunnel between dots. For adiabatic pulses the resulting gate is described by a unitary operator acting on
the four-dimensional Hilbert space of two qubits. If the precession axis is fixed, time-symmetric pulsing
constrains the set of possible gates to those which, when combined with single qubit rotations, can be used in
a simple controlled-NOT construction. Deviations from time-symmetric pulsing spoil this construction. The
effect of time asymmetry is studied by numerically integrating the Schro¨dinger equation using parameters
appropriate for GaAs quantum dots. Deviations of the implemented gate from the desired form are shown to be
proportional to dimensionless measures of both spin-orbit coupling and time asymmetry of the pulse.
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I. INTRODUCTION

A promising proposal for building a solid-state quantu
computer is based on the notion of using electron sp
trapped in quantum dots as qubits.1 In such a device, two-
qubit quantum gates would be carried out by turning on a
off the exchange interaction between spins on neighbo
dots through suitable pulsing of gate voltages.

When performing such a quantum gate, if nonadiaba
errors2–4 can be safely ignored,5 both the initial and final
states of the two dots will be in the four-dimensional Hilbe
space of two qubits. In the absence of spin-orbit coupli
and neglecting the dipolar interaction between spins, the
tary transformation resulting from such a pulsed excha
gate will necessarily have the form

U5exp2 ilSA•SB , ~1!

wherel is a dimensionless measure of the pulse stren
This simple isotropic form is a consequence of symmetry—
spin and space decouple exactly, as they do in the non
tivistic limit, then the system is perfectly isotropic in sp
space. Up to an irrelevant overall phase, gates~1! are the
most general unitary operators with this symmetry acting
a two-qubit Hilbert space.

These isotropic exchange gates are useful for quan
computation. In conjunction with single qubit rotations, th
can be used in a simple construction of a controlled-NOT

gate.1 It has also been shown that, even without single qu
rotations, isotropic exchange gates can be used for unive
quantum computing with proper encoding of logic
qubits.6,7

When the effects of spin-orbit coupling are include
well-isolated single-electron dots will have a twofold Kram
0163-1829/2003/68~11!/115306~9!/$20.00 68 1153
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ers degeneracy and so can still be used as qubits. How
when carrying out a quantum gate the total spin will
longer be a good quantum number. As a result there
inevitably be corrections to the isotropic exchange gates~1!.
Motivated by this fact, a number of authors have conside
anisotropicgates of the form

U5exp2 il@SA•SB1b•~SA3SB!

1g„SA•SB2~b̂•SA!~b̂•SB!…#, ~2!

and shown that they have several useful properties. For
ample, in Ref. 8 it was shown that the controlled-NOT con-
struction of Ref. 1 is robust against anisotropic corrections
the form appearing in Eq.~2!. It has also been shown tha
when combined with a controllable Zeeman splitting, ga
~2! form a universal set.9

The anisotropic terms which appear in Eq.~2! are not the
most general corrections to Eq.~1! which can occur when
carrying out an exchange gate in the presence of spin-o
coupling. It is therefore important to ask under what con
tions these corrections can be restricted to have this des
form. The key observation motivating the present work
that, up to an irrelevant overall phase, gates~2! are the most
general two-qubit quantum gates which are both axially sy
metric, i.e., symmetric under rotations about an axis para
to the vectorb in spin space, and symmetric under tim
reversal (Sm→2Sm ,m5A,B). It follows that if these sym-
metries can be maintained throughout the gate operation,
provided nonadiabatic errors can be neglected, the resu
quantum gate isguaranteedto have form~2!. Of course,
symmetry alone cannot determine the values ofl, b, andg.
However, in practice we envision these parameters will
©2003 The American Physical Society06-1
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determined through experimental calibration rather than
croscopic calculation. Therefore we emphasize symmetr
a useful guiding principle.

In this paper we study the effect of spin-orbit coupling
exchange-based quantum gates. For concreteness we
sider a system of two single-electron quantum dots in Ga
The contribution of spin-orbit coupling to the exchange
teraction between localized spins in GaAs has been stu
by Kavokin10 within the Heitler-London approximation, an
by Gor’kov and Krotkov11 who derived the exact asymptot
exchange interaction between hydrogenlike bound state
large separation.

Here we follow Ref. 2 and work within the Hund
Mulliken approximation, keeping one orbital per dot, a
allowing double occupancy. In this approximation, the eff
of spin-orbit coupling is to induce a small spin precess
whenever an electron tunnels from one dot to another.
Hamiltonian governing the two-dot system is therefore a
ally symmetric in spin space with the symmetry axis be
the precession axis of the spin. If the direction of the prec
sion axis does not change while the gate is being pulsed,
the resulting quantum gate will also be axially symmetric

An additional useful symmetry principle, first suggest
in Ref. 12, is that any time-dependent HamiltonianHP(t)
which is time-reversal symmetric at all timest, and which is
then pulsed in a time-symmetric way@HP(t)5HP(2t)#,
will lead to a gate which can be described in terms of
effective time-independent HamiltonianH which is also
time-reversal symmetric. Here we give a proof of this res

Taken together these two results imply that, within t
Hund-Mulliken approximation, if the spin-orbit precessio
axis is fixed and nonadiabatic errors can be ignored, the
tary transformation produced by pulsing the exchange in
action between two quantum dots will necessarily have
desired form~2!, provided the gate is pulsed in a time
symmetric way.

This paper is organized as follows. In Sec. II we der
the Hund-Mulliken Hamiltonian for a double quantum d
system in the presence of spin-orbit coupling. In Sec. III
develop an effective spin Hamiltonian description which c
be applied to pulsing our double dot system, and we rev
the robust controlled-NOT construction of Ref. 8. The impli-
cations of time-symmetric pulsing are then studied in S
IV, and in Sec. V we present numerical results showing
effect of small time asymmetry of the pulse. Finally, in Se
VI we summarize the results of the paper.

II. HUND-MULLIKEN HAMILTONIAN

We consider a system of two laterally confined quant
dots with one electron in each dot. For concreteness we
sume the dots are formed in a two-dimensional electron
~2DEG! realized in a GaAs heterostructure.

The system is modeled by the Hamiltonian

H5T1C1HSO. ~3!

Here T1C is the Hamiltonian studied in Ref. 2, whereT
5( ihi with
11530
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hi5
1

2m S pi2
e

c
A~r i ! D 2

1V~r i !, ~4!

andC5e2/eur12r2u is the Coulomb repulsion between ele
trons. We take the 2DEG the dots are formed in to lie in
xy plane, and for GaAs we takem50.067me and e513.1.
For completeness we include a vector potentialA
5(2y,x,0)B/2 which couples the orbital motion of the ele
trons to a uniform magnetic fieldB5Bẑ. We will see in Sec.
III that this orbital coupling does not affect any of our arg
ments based on time-reversal symmetry, while a nonz
Zeeman coupling does.

As in Ref. 2 lateral confinement of the dots is modeled
the double-well potential,

V~x,y!5
mv0

2

2 S 1

4a2
~x22a2!21y2D . ~5!

This potential describes two quantum dots sitting at
points (x,y)5(6a,0). In the limit of large separation the
dots decouple into two harmonic wells with frequencyv0.

Spin-orbit coupling enters the Hamiltonian through t
term

HSO5 (
i 51,2

V~k i !•Si , ~6!

where\k5p2e/cA. Time-reversal symmetry requires th
V(k) is an odd function ofk, V(k)52V(2k). ThusV is
nonzero only in the absence of inversion symmetry.

For definiteness, we take the 2DEG in which the dots
formed to lie in the plane perpendicular to the@001# struc-
tural direction, which then points along thez axis. However,
we allow thex axis, which is parallel to the displaceme
vector of the two dots, to have any orientation with respec
the @100# and @010# structural axes. To describe the depe
dence ofV on k it is then convenient to introduce unit vec
tors ê[110] and ê[1̄10] which point in the@110# and @ 1̄10#
structural directions, respectively, and definek[110]5k
•ê[110] and k[1̄10]5k•ê[1̄10] . We then have, following
Kavokin,10

V~k!.~ f D2 f R!k[110]ê[1̄10]1~ f D1 f R!k[1̄10]ê[110] . ~7!

Here f D is the Dresselhaus contribution13,14 due to the bulk
inversion asymmetry of the zinc-blende crystal structure
GaAs, andf R is the Rashba contribution15 due to the inver-
sion asymmetry of the quantum well used to form the 2DE
These quantities depend on details of the 2DEG confin
potential and so will vary from system to system.

It was pointed out in Ref. 16 thatHSO has a special sym
metry whenf D56 f R . This can be seen directly from Eq
~7!. When f D5 f R ( f D52 f R) the direction ofV is indepen-
dent ofk and is fixed to be parallel toê[110] (ê[1̄10]). The full
Hamiltonian ~3! is then invariant under rotations in spi
space about this axis. We will see below that this special c
has a number of attractive features.
6-2
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In the limit of decoupled dots, and ignoring spin-orb
coupling, the single-electron ground states will be the Fo
Darwin ground states centered at (x,y)5(6a,0),

f6a~x,y!5Amv

p\
e2mv[(x7a)21y2]/2\e6 iay/2l B

2
. ~8!

Here v5Av0
21vL

2 is the frequency of the magneticall
squeezed oscillator wherevL5eB/2mc is the Larmor fre-
quency andl B5A\c/eB is the magnetic length. In zer
magnetic field, the size of these wave functions is set by
effective ‘‘Bohr radius’’aB5A\/mv0.

The Fock-Darwin states can be orthogonalized to ob
the Wannier states

FA5
1

A122Sg1g2
~fa2gf2a!, ~9!

FB5
1

A122Sg1g2
~f2a2gfa!, ~10!

where S5^f2aufa& and g5(12A12S2)/S. We can then
introduce second quantized operatorscA

†
a (cAa) and cB

†
a

(cBa) which create~annihilate! electrons in the statesFA
andFB with spin a5↑,↓.

In the Hund-Mulliken approximation we keep one orbit
per dot and allow for double occupancy. This amounts
restricting the full Hilbert space of the problem to the s
dimensional Hilbert space spanned by the states

uS1&5
1

A2
~cA↑

† cB↓
† 2cA↓

† cB↑
† !u0&, ~11!

uS2&5
1

A2
~cA↑

† cA↓
† 1cB↓

† cB↑
† !u0&, ~12!

uS3&5
1

A2
~cA↑

† cA↓
† 2cB↓

† cB↑
† !u0&, ~13!

uT2&5cA↓
† cB↓

† u0&, ~14!

uT0&5
1

A2
~cA↑

† cB↓
† 1cA↓

† cB↑
† !u0&, ~15!

uT1&5cA↑
† cB↑

† u0&. ~16!

In terms of second quantized operators, the Hu
Mulliken Hamiltonian acting in this space, up to an irre
evant overall additive constant, can be written

HHM5 (
a,b5↑,↓

2@cA
†

a~ tHdab1 iP•sab!cBb1H.c.#

1V~SA•SB13/4!1UH~nA↑nA↓1nB↑nB↓!. ~17!

Here
11530
-

e

in

o

-

Sm5
1

2 (
a,b5↑,↓

cm
†

asabcmb ~18!

is the spin operator on sitem5A,B,

V5^S1uCuS1&2^T0uCuT0& ~19!

is the ferromagnetic direct exchange,

UH5^S2uCuS2&2^S1uCuS1& ~20!

is the Coulomb energy cost of doubly occupying a dot, a

tH5^FAuhuFB& ~21!

is the interdot tunneling amplitude.
The only contribution from spin-orbit coupling is the ma

trix element

iP5^FAuV~k!uFB&5^FAu
1

\ S px2
e

c
AxD uFB&h,

~22!

where

h5~ f D2 f R!cosuê[1̄10]1~ f D1 f R!sinuê[110] . ~23!

Hereu is the angle thex axis makes with the@110# structural
direction. This term introduces a small spin precession ab
an axis parallel toP through an anglef52 arctan(P/tH)
when an electron tunnels between dots.

It is convenient to express the spin-orbit matrix eleme
asP5slSO where

s5
A~ f D2 f R!2cos2u1~ f D1 f R!2sin2u

aB \v0
~24!

is a dimensionless measure of the strength of spin-orbit c
pling. As stated above,f D and f R depend on details of the
potential confining the electron to the 2DEG. Thusu, f D ,
and f R are all parameters that, in principle, can be enginee
to control the value ofs. For example, ifu50 thens5u f D
2 f Ru/(aB\v0). Thus, for this orientation of the dots, if it is
possible to design a system in whichf D5 f R , s can be made
to vanish. Even if such perfect cancellation cannot
achieved, minimizing the differencef D2 f R will reduces.

In what follows we leaves as a free parameter. We est
mate that for GaAs quantum dotss,0.1 for typical
parameters.10 The remaining contribution to the matrix ele
mentP is then

lSO5
\v0

2

12g2

122Sg1g2

d

b
e2d2b(221/b2)ĥ, ~25!

whered5a/aB is a dimensionless measure of the distan
between dots,b5A11vL

2/v0
2, and ĥ5h/h. The geometry

of our model system is shown schematically in Fig. 1.
In what follows we envision pulsing quantum gates

varying the distanced between dots as a function of time. I
doing this, we will assume that throughout the pulse the v
ues of f D and f R do not change. If this is the cases will be
constant and all of the time dependence ofP will be due to
6-3



xe
h

xi-
is
d

e
re
nt
to
ym

l
ym
-

om

ke

s

om
o
a

the
rt
the

tes
.
by
h

to be
ill

lse

il-
l.

ive
c,

plit-
in-
na-

to

ous
ne
fi-

ced

he
-
pin
-

r

lse,
ta-
he
pin
to

si
ep

r t

to

D. STEPANENKOet al. PHYSICAL REVIEW B 68, 115306 ~2003!
lSO. In addition, the direction of the vectorP will not change
as a function of time. The HamiltonianHHM will therefore
be invariant under rotations in spin space about a single fi
axis parallel toP throughout the pulse. We will refer to suc
a pulse as having axial symmetry.

It is important to note that this axial symmetry is appro
mate. In generalf D and f R will depend on time as the gate
pulsed, though in principle the system can be engineere
minimize this effect. Also, for generalf D and f R the appear-
ance of only one vector in spin space is a consequenc
restricting the Hilbert space to one orbital per dot. If mo
orbitals are included then more spin-orbit matrix eleme
will appear in the Hamiltonian, corresponding typically
different spin-precession axes, thus breaking the axial s
metry. However, as shown above, iff D56 f R then the full
Hamiltonian ~3! is axially symmetric—thus for this specia
case all spin-precession axes will be parallel and axial s
metry will not just be an artifact of the Hund-Mulliken ap
proximation. In Sec. V we discuss the effect deviations fr
axial symmetry will have on our results.

Given an axially symmetric pulse, it is convenient to ta
the z axis in spin space to be parallel toP. For this choice,
the statesuT1& and uT2& decouple, each having energyV.

Another useful symmetry ofHHM is invariance under
cAa→cB,2a and cBa→cA,2a . This transformation change
the sign of the statesuS1&, uS2&, and uT0&, while leaving
uS3& invariant. It follows that the stateuS3& also decouples
with energyUH . The matrix representation ofHHM in the
remaining nontrivialuT0&, uS1&, uS2& basis is then

HHM5S V 0 22iP

0 0 22tH

2iP 22tH UH

D . ~26!

III. EFFECTIVE SPIN HAMILTONIAN

We now consider pulsing the HamiltonianHHM by vary-
ing the distance between the dots, the barrier height, or s
combination of the two, in such a way that the two electr
spins interact for a finite period of time, but are well sep

FIG. 1. Sketch of the GaAs double quantum dot system con
ered in this paper. There is one electron per dot, and the dot s
ration is 2a. The dots are taken to lie in the plane perpendicula
both the@001# axis and an applied magnetic fieldB. The displace-
ment of the dots makes an angleu with the @110# axis. Due to
spin-orbit coupling electron spins precess about an axis parallelP
when tunneling between dots.
11530
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rated at the beginning and end of the pulse. We assume
initial state of the system is in the four-dimensional Hilbe
space describing two qubits, i.e., the space spanned by
singly occupied statesuS1&,uT0&,uT2&, and uT1&. As the
pulse is carried out, the eigenstates ofHHM at any given
instant in time can be grouped into four low-energy sta
separated by a gap of orderUH from two high-energy states
If the pulse is sufficiently adiabatic on a time scale set
;\/UH , the amplitude for nonadiabatic transitions whic
would leave the system in the excited stateuS2& at the end of
the pulse can be made negligibly small.5 If this condition
holds, the final state of the system can also be assumed
in the four-dimensional Hilbert space of two qubits. We w
see that this condition is easily achieved in Sec. V.

One way to theoretically study the effect of such a pu
would be to first reduceHHM to an effective anisotropic spin
Hamiltonian acting on the four-dimensional low-energy H
bert space and then consider pulsing this effective mode12

The problem with this approach is that any such effect
spin Hamiltonian will only be valid if the pulse is adiabati
not only on the time scale\/UH , but also on the much
longer time scale set by the inverse of the small energy s
tings within the low-energy space due to the spin-orbit
duced anisotropic terms. However, it is precisely the no
diabatic transitions induced by these terms which give rise
the quantum gate corrections we would like to compute.

Although we may not be able to define an instantane
effective spin Hamiltonian during the pulse, we can defi
one which describes the net effect of a full pulse. This de
nition amounts to parametrizing the quantum gate produ
by the pulse as

U5e2 i tH, ~27!

whereU acts on the four-dimensional Hilbert space of t
initial and final spin states.H is then an effective spin Hamil
tonian, i.e., it can be expressed entirely in terms of the s
operatorsSA andSB , andt is a measure of the pulse dura
tion. Note the definition oft is arbitrary because it is the
producttH which determinesU. Here, and in the remainde
of this paper, we work in units in which\51.

If we assume exact axial symmetry throughout the pu
the effective spin Hamiltonian must be invariant under ro
tions about thez axis in spin space and must also leave t
statesuT1& anduT2& degenerate. The most general such s
Hamiltonian, up to an irrelevant additive term proportional
the identity operator, is

tH~l;a,b,g!5lS SA•SB1
a

2
~SAz2SBz!

1b~SAxSBy2SAySBx!

1g~SAxSBx1SAySBy! D , ~28!

and we denote the corresponding quantum gate as

U~l;a,b,g!5e2 i tH(l;a,b,g). ~29!

Whena50, this is precisely gate~2! for bi ẑ.

d-
a-

o
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The controlled-NOT construction originally proposed in
Ref. 1 is based on the sequence of gates

Ug5U~p/2;0,0,0!eipSAzU~p/2;0,0,0!, ~30!

where U(p/2;0,0,0)5exp2i@(p/2)SA•SB# is a square root
of swap gate. The controlled-NOT gate is then

UCNOT5ei (p/2)SAzei (p/2)SBzUg . ~31!

Remarkably, it was shown in Ref. 8 that ifl5p/2 anda
50 this construction is robust against theb and g correc-
tions, i.e., the gate

Ug5U~p/2;0,b,g!eipSAzU~p/2;0,b,g! ~32!

is independent ofb andg.
For completeness, we briefly review the arguments

Ref. 8. Due to axial symmetry, the action of the ga
U(l;a,b,g) on the statesuT1& anduT2& is trivial and inde-
pendent ofa,b, andg,

U~l;a,b,g!uT6&5e2 il/4uT6&. ~33!

We can then introduce a pseudospin description of the
maining space, whereuS1& is pseudospin down anduT0& is
pseudospin up. The action of the gateU(l;a,b,g) on this
pseudospin space is a simple rotation,

U~l;a,b,g!⇒eil/4e2 ib•t/2, ~34!

where b5l(a,b,g11) and the components oft
5(tx ,ty ,tz) are pseudospin Pauli matrices. At the sa
time, the action of the single qubit rotation enteringUg is

eipSAz⇒ i tx . ~35!

Thus to show that the controlled-NOT construction is in-
dependent ofb and g if a50 we need only show that th
product

e2 ib•t/2txe
2 ib•t/2 ~36!

is independent ofb and g if a50. This condition has a
simple geometric interpretation. It is the requirement tha
rotation about an axis parallel tob, followed by a 180° ro-
tation about thex axis, and then a repeat of the initial rotatio
must be equivalent to a simple 180° rotation about thex axis.
This will trivially be the case if the vectorb5l(a,b,g
11) lies in theyz plane. Thus, ifa50, this condition is
satisfied and the Controlled-NOT construction is exact. Con
versely, ifaÞ0 the construction is spoiled.

IV. TIME-REVERSAL SYMMETRY

In this section we prove the following general result. A
time-dependent HamiltonianHP(t) which is time-reversal
symmetric for all t, and for which the time dependence
itself symmetric, i.e.,HP(t02t)5HP(t01t) for all t, will
generate a unitary evolution operatorU5exp2itH whereH
is a time-independent effective Hamiltonian which is a
time-reversal symmetric. We then show that this theorem
plies that the parametera, which spoils the controlled-NOT
11530
f

e-

e

a

-

construction described in Sec. III, is equal to zero for tim
symmetric pulsing.

The time-reversal operation for any quantum system
be represented by an antiunitary operatorQ.17 An orthonor-
mal basis$uMi&% for the Hilbert space of this system is the
said to be a time-symmetric basis if

QuMi&5uMi& ~37!

for all i.
For any HamiltonianH acting on a stateuMi& in this basis

we can write

HuMi&5(
j

^M j uHuMi&uM j&. ~38!

Under time reversalH is transformed intoQHQ21. Using
the invariance of the$uMi&% basis and the antiunitarity ofQ
we can then also write

QHQ21uMi&5QHuMi& ~39!

5Q(
j

^M j uHuMi&uM j& ~40!

5(
j

^M j uHuMi&* uM j&. ~41!

Comparing Eqs.~38! and~41! leads to the conclusion that i
H is time-reversal symmetric, i.e.,H5QHQ21, then the
Hamiltonian matrix is purely real in the$uMi&% basis, while
if H is antisymmetric underQ, i.e.,H52QHQ21, then the
Hamiltonian matrix is purely imaginary.

Since H is real in the$uMi&% basis if and only ifH is
time-reversal symmetric it follows that the unitary opera
U5exp2itH is self-transpose, i.e.,U5UT, if and only if H
is time-reversal symmetric.

Now consider a time-dependent pulse described by
HamiltonianHP(t). We assume thatHP(t) is time-reversal
symmetric at all times, i.e.,HP(t)5QHP(t)Q21 for all t.
The corresponding unitary evolution operatorU which
evolves the system from timet I to tF can be written as

U5 lim
N→`

U~ tN!U~ tN21!•••U~ t2!U~ t1!, ~42!

where

U~ t i !5e2 iDtHP(t i ) ~43!

with Dt5(tF2t I)/N and t1[t I and tN[tF .
SinceHP(t i) is time-reversal symmetric, the above arg

ments implyUT(t i)5U(t i) when U(t i) is expressed in the
time-symmetric basis$uMi&%. Thus, in this basis, we have

UT5 lim
N→`

@U~ tN!U~ tN21!•••U~ t2!U~ t1!#T ~44!

5 lim
N→`

UT~ t1!UT~ t2!•••UT~ tN21!UT~ tN!

~45!

5 lim
N→`

U~ t1!U~ t2!•••U~ tN21!U~ tN!. ~46!
6-5
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For a time-symmetric pulseHP(t i)5HP(tN112 i) and so
U(t i)5U(tN112 i). This allows us to reverse the order of th
operators in Eq.~46! which then implies

UT5U. ~47!

Thus if we writeU in terms of an effective Hamiltonian,

U5e2 i tH, ~48!

the matrix elements ofH must be real in the time-symmetri
basis.H must therefore be time-reversal symmetric, i.e.,H
5QHQ21.

To apply this theorem to the present problem we take
time-reversal operator for our two-electron system to be

Q5eipSAyeipSByK. ~49!

Here the antiunitary operatorK is defined so that when ac
ing on a given state it takes the complex conjugate of
amplitudes of that state when expressed in the Hu
Mulliken basis defined in Sec. II. Note that this basis is co
structed using the Fock-Darwin states, and if a magnetic fi
is present these states will be necessarily complex va
when expressed in the position basis. As defined here,
antiunitary operatorK only takes the complex conjugates
the amplitudes in the Hund-Mulliken basis,it does not take
the complex conjugate of the Fock-Darwin states themsel.
Thus, if a magnetic field is present,Q should be viewed as
an effectivetime-reversal symmetry operator. This is a tec
nical point which does not affect any of our conclusio
~provided the Zeeman coupling can be ignored—see belo!.
The key property that we will need in what follows is th
spin changes sign under time reversal, and it is readily v
fied that for our definition ofQ,

QSmQ2152Sm ~50!

for m5A,B even in the presence of a magnetic field.
Under Q, the Hund-Mulliken basis states transform

follows,

QuSi&5uSi& for i 51,2,3, ~51!

QuT0&52uT0&, ~52!

QuT1&5uT2&, ~53!

QuT2&5uT1&. ~54!

The statesuSi& therefore form a time-symmetric basis for th
singlet states. A time-symmetric basis for the triplet state
given by

uT̃0&5 i uT0&, ~55!

uT̃a&5
1

A2
~ uT1&1uT2&), ~56!

uT̃b&5
i

A2
~ uT2&2uT1&), ~57!
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all of which are eigenstates ofQ with eigenvalue11.
The matrix representation ofHHM in the time-reversal

invariant uT̃0&, uS1&, uS2& basis is

HHM5S V 0 22P

0 0 22tH

22P 22tH UH

D , ~58!

which is real, reflecting the effective time-reversal symme
of HHM . Note that this would not be the case ifHHM in-
cluded the Zeeman coupling of electron spins to an exte
magnetic field. While for typical field strengths the Zeem
coupling is small,2 for some parameters it can be compara
to the spin-orbit corrections considered here. If this is
case our conclusions following from effective time-revers
symmetry will no longer be valid. Of course in zero ma
netic field exact time-reversal symmetry is guaranteed.

We now consider pulsing a time dependentHHM(t) adia-
batically so that, according to the arguments of Sec. III,
resulting gate can be parametrized by an effective s
Hamiltonian H. Since at all timest the Hund-Mulliken
Hamiltonian is time-reversal symmetric, if the pulse itself
time symmetric, i.e.,HHM(t)5HHM(2t) where we take the
center of the pulse to be att50, then the above theorem
implies that the effective spin HamiltonianH will also be
time-reversal symmetric. ThusH5QHQ21, and since
QSmQ2152Sm this impliesH must be quadratic in the spi
operators, and soa50. The resulting gate will therefore
have the desired form~2!.

For completeness we also consider here the case of t
antisymmetric pulsing. IfHP(t)52HP(2t) then

U~ t !5e2 iDtHP(t)5eiDtHP(2t)5U~2t !21, ~59!

and the resulting quantum gate is

U5 lim
N→`

U~ t1!U~ t2!•••U~ tN/2!U~ tN/2!
21

•••

U~ t2!21U~ t1!2151. ~60!

The net effect of any time-antisymmetric pulse is thus sim
the identity transformation.

V. MODEL CALCULATIONS

We have seen from symmetry arguments that tim
symmetric pulsing of an axially symmetric Hamiltonia
such asHHM when f D and f R are constant, which is itsel
time-reversal symmetric at all times, will automatically pr
duce a gate of form~2!, provided the pulse is adiabatic s
that the initial and final states of the system are in the fo
dimensional Hilbert space of two qubits. It is natural to th
ask what the effect of the inevitable deviations from tim
symmetric pulsing will be on the resulting gate. To inves
gate this we have performed some simple numerical sim
tions of coupled quantum dots.

In our calculations, we imagine pulsing the dots by va
ing the dimensionless distanced between them according t
6-6
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d~ t !5d01S t

t1rt D
2

. ~61!

Hered0 is the distance at the point of closest approach,t is
a measure of the pulse duration, andr is a dimensionless
measure of the time asymmetry of the pulse. This form
scribes the generic behavior of any pulse for times near
pulse maximum (t50). Note that for largeutu, and for r
Þ0, the distanced(t) will saturate, and has a singularity fo
negativet. We have takenr to be small enough so that th
dots decouple long before this leads to any difficulty.

For our calculations, we work in zero magnetic field a
take\v053 meV andd051, corresponding toa.20 nm at
closest approach. The resulting time dependences of the
rameters inHHM are shown in Fig. 2. Note that the spin-orb
matrix element plotted in this figure isl SO, while the spin-
orbit matrix element appearing inHHM is P5slSOẑ, wheres
is the dimensionless measure of spin-orbit coupling int
duced in Sec. II.

For a given pulseHHM(t) we integrate the time-
dependent Schro¨dinger equation to obtain the evolution o
eratorU for the full pulse. If the pulse is adiabatic then th
matrix elements ofU which couple the singly occupied state
uS1& anduT0& to the doubly occupied stateuS2& can be made
negligibly small.5 The quantum gate is then obtained by si
ply truncatingU to the 434 matrix acting on the two-qubi
Hilbert space. By taking the log of this matrix we obta
tH5 i ln U and thus the parametersl,a,b,g. Note that
when calculating lnU, there are branch cuts associated w
each eigenvalue ofU, and as a consequencetH is not
uniquely determined. We resolve this ambiguity by requiri
that as the pulse height is reduced to zero andU goes con-
tinuously to the identity thattH→0 without crossing any
branch cuts.

FIG. 2. Time dependence of matrix elements appearing in
Hund-Mulliken description of a double quantum dot when the d
placement of the dots is varied according to Eq.~61! with d051.
Results are for GaAs parameters in zero magnetic field with\v0

53 meV and are plotted vs the dimensionless quantityt/t for two
values of the time-asymmetry parameter,r 50 ~solid line! and r
50.1 ~dashed line!.
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We fix the pulse widtht by requiring that if we turn off
spin-orbit coupling (s50) we obtain al5p/2 pulse, i.e., a
square root of swap. For the parameters used here we
this corresponds to takingt523.9/v0.5 ps. We have
checked that these pulses are well into the adiabatic reg
The magnitudes of the matrix elements coupling singly
cupied states to the doubly occupied stateuS2& are on the
order of u^S1uUuS2&u;1026 and u^T0uUuS2&u;s1026.

Oncet is fixed, there are two parameters characteriz
each pulse,s and r, and four parameters characterizing t
resulting gate,l, a, b, andg. The transformation propertie
of these parameters under parity~P! and time reversal~T! are
summarized in Table I. These properties follow from the fa
that ~i! under time reversalSm→2Sm and r→2r , while P
5slSOẑ is invariant, and~ii ! under paritySA↔SB and P→
2P, while r is invariant. Note that, as defined in Sec. II, th
parameters is positive. Here we allows to change sign when
the direction of the vectorP is reversed, thus under parit
s→2s.

These symmetry properties imply that ifs andr are small,
the parameters of the effective Hamiltonian will be giv
approximately by

a.Cars, ~62!

b.Cbs, ~63!

g.Cgs2, ~64!

l.l01Cls2, ~65!

where the coefficients should be of order 1. For the pulses
consider herel05p/2.

The results of our calculations are shown in Fig. 3. Ea
point corresponds to a separate numerical run. The plots
l, b, and g show their dependence ons when r 50. The
dependence of the parametera on pulse asymmetry is show
by plottinga/s versusr. For thes values we have studied, u
to usu50.1, the numerical results fora/s are essentially in-
dependent ofs for a givenr. These results are clearly con
sistent with the above symmetry analysis.

Now consider carrying out a controlled-NOT gate using
the scheme reviewed in Sec. III. For this construction
work it is necessary thatl5p/2. In our calculations we have
fixed t so thatl5p/2 for s5r 50. Thus, when spin-orbit
coupling is included

l.p/21Cls2. ~66!

e
-

TABLE I. Symmetry properties of the pulse parametersr ands,
and gate parametersl, a, b, andg under parityP and time rever-
sal T.

r s l a b g

P 1 2 1 2 2 1

T 2 1 1 2 1 1
6-7
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In order to keepl5p/2 it will therefore be necessary t
adjust the pulse widtht slightly to correct for spin-orbit
effects.

The central result of this paper is summarized by
equation

a.Cars. ~67!

As shown in Sec. III, any nonzeroa will lead to corrections
to the Controlled-NOT construction. For time-symmetri
pulsesr 50 and these corrections will vanish. Equation~67!
can then be used to estimate the errors due to any time a
metry of the pulse, and to put design restrictions on the
lowed tolerance for such asymmetry.

It is important to note that while the results presented h
are for a specific model, all of the key arguments are ba
on symmetry and so are quite general. Given any tim
reversal invariant two-qubit system with axial symmetry,
pulsed adiabatically in a time-symmetric way the result
gate will have form~2!.

While nearly perfect time-symmetric pulsing can presu
ably be achieved with sufficiently accurate pulse control,
expect that exact, or nearly exact, axial symmetry will
more difficult to realize. The results of this paper give so
useful design guidelines for achieving this goal. For e
ample, we have shown that within the Hund-Mulliken a
proximation axial symmetry is maintained provided the ra
f D / f R is kept constant throughout the pulse. As pointed
in Sec. III, however, even if quantum dots can be enginee
so that this is the case, corrections beyond the Hu
Mulliken approximation will still, in general, lead to devia
tions from exact axial symmetry. Only when the special co
dition f D56 f R is satisfied will the full Hamiltonian
describing the system be axially symmetric. Achieving t

FIG. 3. Parameters appearing in the effective spin Hamilton
derived from pulses depicted in Fig. 2. The parametersa, b, andg
are shown as functions ofs for the caser 50 ~time-symmetric
pulses!. Fora the quantitya/s is plotted vsr. We have verified that
the ratioa/s is essentially independent ofs for all values we have
considered (usu<0.1).
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special condition is therefore the ideal case to strive for
perimentally in order to guarantee axially symmetric qua
tum gates.

Even if perfect axial symmetry cannot be achieved, tim
symmetric pulsing will still restrict the resulting gate to b
invariant under time reversal. Thus, up to an irrelevant ov
all phase, this gate will necessarily have the form

U5exp2 il~SA•SB1b•~SA3SB!1SA•IG•SB!. ~68!

HereIG is a symmetric tensor which will, in general, devia
from the axial form of theg term in Eq.~2! leading to cor-
rections to the controlled-NOT construction. However, be
causeIG is even under parity it will still be second order i
spin-orbit coupling,12 and thus the deviations from Eq.~2!
will also be second order. We conclude that even in the
sence of exact axial symmetry, the corrections to
Controlled-NOT construction will be second order in spin
orbit coupling, rather than first order.

VI. CONCLUSIONS

In this paper we have studied spin-orbit corrections
exchange-based quantum gates, emphasizing symmetry
ments. In particular, we have shown that adiabatic tim
symmetric pulsing of any Hamiltonian which~i! describes
two well-defined spin-1/2 qubits at the beginning and end
the pulse,~ii ! is time-reversal symmetric at all times durin
the pulse, and~iii ! is axially symmetric in spin space with
fixed symmetry axis, will automatically produce a gate
form ~2!. Together with single qubit rotations, forl5p/2
this gate can then be used in a simple Controlled-NOT con-
struction. This result is quite general.

As a specific example we have studied a GaAs dou
quantum dot system within the Hund-Mulliken approxim
tion. In this approximation spin-orbit coupling enters as
small spin precession when an electron tunnels between d
If the direction of this precession axis is constant through
the pulse the resulting gate will be axially symmetric a
have form Eq.~29!. The deviation of this gate from the de
sired gate~2! is then characterized by a single dimensionle
parametera which spoils the Controlled-NOT construction.
Using symmetry arguments, as well as numerical calcu
tions, we have shown thata.Casr wheres and r are, re-
spectively, dimensionless measures of spin-orbit coup
and time asymmetry of the pulse. Thus time-symmetric pu
ing (r 50) ensures the anisotropic corrections will have t
desired form.

In any system without spatial inversion symmetry, sp
orbit coupling will inevitably lead to anisotropic correction
to the exchange interaction between spins. According to
rent estimates,18 fault-tolerant quantum computation will re
quire realizing quantum gates with an accuracy of one par
104. Thus, even if spin-orbit coupling is weak, the design
any future quantum computer which uses the exchange in
action will have to take these anisotropic corrections in
account. We believe the symmetry based analysis prese
in this paper provides a useful framework for studying the
effects.

n
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