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Spin-orbit coupling and time-reversal symmetry in quantum gates
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We study the effect of spin-orbit coupling on quantum gates produced by pulsing the exchange interaction
between two single-electron quantum dots. Spin-orbit coupling enters as a small spin precession when elec-
trons tunnel between dots. For adiabatic pulses the resulting gate is described by a unitary operator acting on
the four-dimensional Hilbert space of two qubits. If the precession axis is fixed, time-symmetric pulsing
constrains the set of possible gates to those which, when combined with single qubit rotations, can be used in
a simple controlledéoT construction. Deviations from time-symmetric pulsing spoil this construction. The
effect of time asymmetry is studied by numerically integrating the Qtihger equation using parameters
appropriate for GaAs quantum dots. Deviations of the implemented gate from the desired form are shown to be
proportional to dimensionless measures of both spin-orbit coupling and time asymmetry of the pulse.
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[. INTRODUCTION ers degeneracy and so can still be used as qubits. However,
when carrying out a quantum gate the total spin will no
A promising proposal for building a solid-state quantumlonger be a good quantum number. As a result there will
computer is based on the notion of using electron spingnevitably be corrections to the isotropic exchange gétes
trapped in quantum dots as qubiitth such a device, two- Motivated by this fact, a number of authors have considered
qubit qguantum gates would be carried out by turning on andnisotropicgates of the form
off the exchange interaction between spins on neighboring
dots through suitable pulsing of gate voltages.

When performing such a quantum gate, if nonadiabatic U=exp—ir[Sx-Sg+ B (SaXSp)
erroré~* can be safely ignoret poth the initial and final . .
states of the two dots will be in the four-dimensional Hilbert +y(SaSe= (B-Sa)(B-S))], 2)

space of two qubits. In the absence of spin-orbit coupling,

and neglecting the dipolar interaction between spins, the uniand shown that they have several useful properties. For ex-
tary transformation resulting from such a pulsed exchang@mple, in Ref. 8 it was shown that the controlteds con-

gate will necessarily have the form struction of Ref. 1 is robust against anisotropic corrections of
the form appearing in Eg2). It has also been shown that,
U=exp—iASy Sg, (1)  when combined with a controllable Zeeman splitting, gates

(2) form a universal set.

where\ is a dimensionless measure of the pulse strength. The anisotropic terms which appear in Eg) are not the
This simple isotropic form is a consequence of symmetry—ifmost general corrections to EQL) which can occur when
spin and space decouple exactly, as they do in the nonrelaarrying out an exchange gate in the presence of spin-orbit
tivistic limit, then the system is perfectly isotropic in spin coupling. It is therefore important to ask under what condi-
space. Up to an irrelevant overall phase, gdtBsare the tions these corrections can be restricted to have this desired
most general unitary operators with this symmetry acting oform. The key observation motivating the present work is
a two-qubit Hilbert space. that, up to an irrelevant overall phase, gaf@sare the most

These isotropic exchange gates are useful for quanturgeneral two-qubit quantum gates which are both axially sym-
computation. In conjunction with single qubit rotations, they metric, i.e., symmetric under rotations about an axis parallel
can be used in a simple construction of a controNed- to the vectorB in spin space, and symmetric under time
gate?! It has also been shown that, even without single qubiteversal 6.——S.,u=A,B). It follows that if these sym-
rotations, isotropic exchange gates can be used for universaietries can be maintained throughout the gate operation, and
guantum computing with proper encoding of logical provided nonadiabatic errors can be neglected, the resulting
qubits®’ quantum gate iguaranteedto have form(2). Of course,

When the effects of spin-orbit coupling are included, symmetry alone cannot determine the values of3, andy.
well-isolated single-electron dots will have a twofold Kram- However, in practice we envision these parameters will be
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determined through experimental calibration rather than mi-
+V(ri), 4

e
croscopic calculation. Therefore we emphasize symmetry as hi:ﬁ( Pi—cAr)
a useful guiding principle.

In this paper we study the effect of spin-orbit coupling onandC=e?/¢€|r,—r,| is the Coulomb repulsion between elec-
exchange-based quantum gates. For concreteness we C@fsns. We take the 2DEG the dots are formed in to lie in the
sider a system of two single-electron quantum dots in GaAsXy plane, and for GaAs we taka=0.067n, and e=13.1.
The contribution of spin-orbit coupling to the exchange in-gq, completeness we include a vector potential
teraction beotween localized spins in GaAs has been studieg(_y,X,O)B/Z which couples the orbital motion of the elec-
by Kavokiri® within the Heitler-London approximation, and trons to a uniform magnetic fiel=Bz. We will see in Sec.

) 1 i ;
by Gor'kov and Krotkov' who derived the exact asymptotic II{ that this orbital coupling does not affect any of our argu-

exchange interaction between hydrogenlike bound states a : .
; ments based on time-reversal symmetry, while a nonzero
large separation.

_ Zeeman coupling does.
nge we foII_ow Ref. 2 af‘d work W'Fh'n the Hund- As in Ref. 2 lateral confinement of the dots is modeled by
Mulliken approximation, keeping one orbital per dot, and

allowing double occupancy. In this approximation, the effectthe double-well potential,

of spin-orbit coupling is to induce a small spin precession )
whenever an electron tunnels from one dot to another. The mwo(

1
4_a2(x2_a2)2+y2 .

©)

Hamiltonian governing the two-dot system is therefore axi- Vixy)= 2
ally symmetric in spin space with the symmetry axis being
the precession axis of the spin. If the direction of the precesThis potential describes two quantum dots sitting at the
sion axis does not change while the gate is being pulsed, thesbints (x,y)=(*a,0). In thelimit of large separation the
the resulting quantum gate will also be axially symmetric. dots decouple into two harmonic wells with frequenay.

An additional useful symmetry principle, first suggested  Spin-orbit coupling enters the Hamiltonian through the
in Ref. 12, is that any time-dependent Hamiltonidp(t) term
which is time-reversal symmetric at all timgsand which is
then pulsed in a time-symmetric wad\Hp(t)=Hp(—1)],
will lead to a gate which can be described in terms of an Hso= 2 Q(k)-S, (6)
effective time-independent HamiltoniaH which is also =t2

time-reversal symmetric. Here we 9“’? a proof of th_is _resu“wherehk: p—e/cA. Time-reversal symmetry requires that
Taken together these two results imply that, within theﬂ(k) is an odd function ok, Q(K) = — Q(—k). ThusQ is

and—Mulllken approximation, if the spln—or_blt Precession ., 7ero only in the absence of inversion symmetry.
axis is fixed and nonadiabatic errors can be ignored, the uni- For definiteness. we take the 2DEG in which the dots are
tary transformation produced by pulsing the exchange interformed to lie in thé plane perpendicular to f@91] struc-

3“'9” dbe;twee(zg) two qg(;in;u?] dOtStW'!l necleszar_lly hat\_/e th‘fural direction, which then points along theaxis. However,
esire t_orm » provide € gate IS puised in a ime- o allow thex axis, which is parallel to the displacement
Symmetric way. vector of the two dots, to have any orientation with respect to

This paper js organiz_ed as follows. In Sec. Il we derivethe [100] and[010Q] structural axes. To describe the depen-
the Hun_d—Mulllken Hamlltoman for_ a douple quantum dot dence ofQ2 onk it is then convenient to introduce unit vec-
system in the presence of spin-orbit coupling. In Sec. Il we A aA i . —
develop an effective spin Hamiltonian description which cant©rs €110) @nd €11 which point in the[110] and [110]
be applied to pulsing our double dot system, and we reviewtructural directions, respectively, and defirigyig=k
the robust controlledtoT construction of Ref. 8. The impli- - €110y and Kjigj=K-€1109). We then have, following
cations of time-symmetric pulsing are then studied in SecKavokin, 0
IV, and in Sec. V we present numerical results showing the
effect of small _time asymmetry of the pulse. Finally, in Sec. Q(k)=(fp— fR)k[llo]é[l_10]+(fD+ fR)k[l_lo]é[llO]- ()
VI we summarize the results of the paper.

Here f is the Dresselhaus contributitrt* due to the bulk
inversion asymmetry of the zinc-blende crystal structure of
GaAs, andfy is the Rashba contributidhdue to the inver-

We consider a system of two laterally confined quantunsion asymmetry of the quantum well used to form the 2DEG.
dots with one electron in each dot. For concreteness we a3hese quantities depend on details of the 2DEG confining
sume the dots are formed in a two-dimensional electron gagotential and so will vary from system to system.

Il. HUND-MULLIKEN HAMILTONIAN

(2DEQ realized in a GaAs heterostructure. It was pointed out in Ref. 16 thatsg has a special sym-
The system is modeled by the Hamiltonian metry whenfp=*fg. This can be seen directly from Eq.
(7). Whenfy=fg (fp=—fR) the direction ofQ) is indepen-
H=T+C+Hsgo. (3)  dent ofk and is fixed to be parallel te;1; (§1107)- The full

Hamiltonian (3) is then invariant under rotations in spin
Here T+ C is the Hamiltonian studied in Ref. 2, whefle  space about this axis. We will see below that this special case
=3;h; with has a number of attractive features.
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In the limit of decoupled dots, and ignoring spin-orbit 1 ;
coupling, the single-electron ground states will be the Fock- S,FE Z CLaTapCpup (18
Darwin ground states centered aty)=(*a,0), wp=ll
is the spin operator on site=A,B,
Ma —mo[(XF 242 +i 2
Pra(Xy) =\ e MTATY IR - (g) V=(S,|C|S;)—(T,|C|To) (19)

Here w=\/a)02+ wE is the frequency of the magnetically Is the ferromagnetic direct exchange,

squeezed oscillator where, =eB/2mc is the Larmor fre- Un=(S,|C|S,)—(S4|C|Sy) (20)
quency andlg=+%c/eB is the magnetic length. In zero )

magnetic field, the size of these wave functions is set by thi$ the Coulomb energy cost of doubly occupying a dot, and
effective “Bohr radius”ag= VAi/Mwy.

The Fock-Darwin states can be orthogonalized to obtain th=(®alh|®g) (21)
the Wannier states is the interdot tunneling amplitude.
The only contribution from spin-orbit coupling is the ma-
1 (4 6 © trix element
J1-2Sg+g? ' ° 9= 1 e
iP:<q)A|Q(k)|q)B>:<(DA| % ( Px— EAX) |(I)B> n,
1
_ 22)
Pp=—"———=(db-a—0¢a), (10) (
1-2sgrg® = ° 7T where
where S=(¢_,|¢,) and g=(1—J1-S?)/S. We can then - A
introduce second quantized operatars, (ca,) and cj, n=(fo—fr)cosberio+ (fotfr)sinbeug. (23
(Ceq) which create(annihilate electrons in the state®,  Hered is the angle the axis makes with thg110] structural
and®g with spina=T,|. direction. This term introduces a small spin precession about

In the Hund-Mulliken approximation we keep one orbital an axis parallel toP through an anglep=2 arctanP/t,)
per dot and allow for double occupancy. This amounts tayhen an electron tunnels between dots.

restricting the full Hilbert space of the problem to the six- |t is convenient to express the spin-orbit matrix element

dimensional Hilbert space spanned by the states asP=slgo where
1 V(fp—fr)2coS 6+ (fp+fR)2sirt o
_ Tt T oAt -
|S1) = E(CATCBL_CMCBTNO% (1) s= ag fiog (29)

is a dimensionless measure of the strength of spin-orbit cou-
pling. As stated above,, and fz depend on details of the

_ Tt Tt
|S2)= \/§(CATCAI+CBlCBT)|O>’ (12) potential confining the electron to the 2DEG. Th@isfp,
andfy are all parameters that, in principle, can be engineered
1 to control the value of. For example, iff=0 thens=|f
|S5) = _(C;TCLL_CéicéT)|O>v (13  —frl/(aghw). Thus, for this orientation of the dots, if it is
V2 possible to design a system in whith=fg, s can be made
to vanish. Even if such perfect cancellation cannot be
IT_)=ckct,[0), (14)  achieved, minimizing the differendg, — f will reduces.
In what follows we leaves as a free parameter. We esti-
mate that for GaAs quantum dots<0.1 for typical
|To)=—=(chck, +ck ct)]0), (15  parameters’ The remaining contribution to the matrix ele-
V2 mentP is then
IT.)=chrcail0). (16 LI T . B NV P
In terms of second quantized operators, the Hund- 2 1-2Sg+g?b

Mulliken Hamiltonian acting in this space, up to an irrel- whered=a/ag is a dimensionless measure of the distance

evant overall additive constant, can be written between dotsb= 1+ w2/w2, and 7=/ 7. The geometry

of our model system is shown schematically in Fig. 1.
Huu= > —[CLa(tHﬁaﬁ‘FiP'O'aB)CB'B‘F H.c] In what follows we envision pulsing quantum gates by
ap=T.l varying the distance between dots as a function of time. In
doing this, we will assume that throughout the pulse the val-
+ V(S Sg+3/4)+Up(nayna +nging ). (1
(Sa-S ) H(MA N+ NaNg ). (17) ues off, andfg do not change. If this is the casewill be
Here constant and all of the time dependencePodvill be due to
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B [001],z rated at the beginning and end of the pulse. We assume the
initial state of the system is in the four-dimensional Hilbert
P . space describing two qubits, i.e., the space spanned by the

singly occupied state$S;),|To),|T_), and |T,). As the
® X pulse is carried out, the eigenstatesHyf,, at any given

; instant in time can be grouped into four low-energy states
i 9 separated by a gap of orddt; from two high-energy states.
If the pulse is sufficiently adiabatic on a time scale set by

[110] ~h/Uy, the amplitude for nonadiabatic transitions which
would leave the system in the excited stgg) at the end of
FIG. 1. Sketch of the GaAs double quantum dot system considthe pulse can be made negligibly snralf this condition
ered in this paper. There is one electron per dot, and the dot sepholds, the final state of the system can also be assumed to be
ration is 2a. The dots are taken to lie in the plane perpendicular toin the four-dimensional Hilbert space of two qubits. We will
both the[001] axis and an applied magnetic fiehl The displace-  see that this condition is easily achieved in Sec. V.

ment of the dots makes an angfewith the [110] axis. Due to One way to theoretically study the effect of such a pulse
spin-orbit coupling electron spins precess about an axis parakel to would be to first reducel to an effective anisotropic spin
when tunneling between dots. Hamiltonian acting on the four-dimensional low-energy Hil-

bert space and then consider pulsing this effective mtidel.

Iso-. In addition, the direction of the vect®will not change  The problem with this approach is that any such effective
as a function of time. The Hamiltoniad,;,, will therefore  spin Hamiltonian will only be valid if the pulse is adiabatic,
be invariant under rotations in spin space about a single fixedot only on the time scalé/U,, but also on the much
axis parallel toP throughout the pulse. We will refer to such longer time scale set by the inverse of the small energy split-
a pulse as having axial symmetry. tings within the low-energy space due to the spin-orbit in-

It is important to note that this axial symmetry is approxi- duced anisotropic terms. However, it is precisely the nona-
mate. In general, andfg will depend on time as the gate is diabatic transitions induced by these terms which give rise to
pulsed, though in principle the system can be engineered tthhe quantum gate corrections we would like to compute.
minimize this effect. Also, for generd} andfy the appear- Although we may not be able to define an instantaneous
ance of only one vector in spin space is a consequence @fffective spin Hamiltonian during the pulse, we can define
restricting the Hilbert space to one orbital per dot. If moreone which describes the net effect of a full pulse. This defi-
orbitals are included then more spin-orbit matrix elementsiition amounts to parametrizing the quantum gate produced
will appear in the Hamiltonian, corresponding typically to by the pulse as
different spin-precession axes, thus breaking the axial sym- .
metry. However, as shown above,fif=*fy then the full U=e '™, (27)

Hamiltonian (3) is axially symmetric—thus for this special \here U acts on the four-dimensional Hilbert space of the
case all spin-precession axes will be parallel and axial sympjtia| and final spin states is then an effective spin Hamil-

metry will not just be an artifact of the Hund-Mulliken ap- (opjan, i.e., it can be expressed entirely in terms of the spin

proximation. In Sec. V we discuss the effect deviations fromoperatorsSA andSs, and 7 is a measure of the pulse dura-

axial symmetry will have on our results. _ tion. Note the definition ofr is arbitrary because it is the
Given an axially symmetric pulse, it is convenient to takepqqyctrH which determined). Here, and in the remainder

the z axis in spin space to be parallel B For this choice, ¢ this paper, we work in units in which=1.

the stategT,) and|T_) decouple, each having eneryy If we assume exact axial symmetry throughout the pulse,
Another useful symmetry oH,y is invariance under ihe effective spin Hamiltonian must be invariant under rota-

Caa—CB,~a @NdCa,—Cp o This transformation changes ijons about thez axis in spin space and must also leave the

the sign of the statefSy), [S;), and|To), while leaving  giated T, ) and|T_) degenerate. The most general such spin
|Ss) invariant. It follows that the statgS;) also decouples  amiltonian, up to an irrelevant additive term proportional to
with energyUy, . The matrix representation ¢l in the e identity operator, is

remaining nontrivial To), |S;), |S,) basis is then

a
V 0 —2iP TH(N a,8,7)=\ SA'SB+E(SAZ_SBZ)

Hum=| © 0 —2ty|. (26)

. + B(SAXSBy_ SAySBx)
2iP -2t Uy

+ ¥(SaxSext SAySBy) ) (28)
Ill. EFFECTIVE SPIN HAMILTONIAN

. . . and we denote the corresponding quantum gate as
We now consider pulsing the Hamiltoniai,,, by vary-

ing the distance between the dots, the barrier height, or some U\, B,y)=e @B, (29)
combination of the two, in such a way that the two electron .
spins interact for a finite period of time, but are well sepa-Whena=0, this is precisely gat&) for 8|z
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The controlledNoT construction originally proposed in construction described in Sec. lll, is equal to zero for time-
Ref. 1 is based on the sequence of gates symmetric pulsing.
_ The time-reversal operation for any quantum system can
Ug=U(7/2;0,0,0€'™U(7/2;0,0,0, (300 be represented by an antiunitary operafoft” An orthonor-
where U(/2:0,0,0)=exp—i[(7/2)Ss- Ss] is a square root ma_ll basis{|Mi_>} for the Hilpert space of this system is then
of swap gate. The controlledoT gate is then said to be a time-symmetric basis if
Ucnor=e!("2Sngi(m2Seay (31) O[M;)=|M;) (37

for all i.
For any HamiltoniarH acting on a statfM;) in this basis
we can write

Remarkably, it was shown in Ref. 8 thatNf= /2 and «
=0 this construction is robust against tgeand y correc-
tions, i.e., the gate

Ug=U(7/2;0,8,7)€ ™rU(7/2;0,8,7) (32) HIM;)= > (Mj|HIM;)M)). (38)
J

is independent of3 and vy.

For completeness, we briefly review the arguments ofJnder time reversaH is transformed intd®®H® ~*. Using
Ref. 8. Due to axial symmetry, the action of the gatethe invariance of th¢_|Mi>} basis and the antiunitarity ¢
U(\;a,B,7) on the statekT ., ) and|T_) is trivial and inde- ~ We can then also write

pendent ofa, 8, andy, OHO 1 M,)=0OH|M,) (39
U(\ia,B,y)[Te)=e MT.). (33
We can then introduce a pseudospin description of the re-

maining space, whergs;) is pseudospin down and ) is

pseudospin up. The action of the g&lé¢\;a,B,y) on this => (Mi[H|M)*|M). (41)
pseudospin space is a simple rotation, i : I :

:; (Mj[H[M)[M;) (40)

U(\:a,B,y)=eMe 1072, (34) Comparing Eqs(38) and(41) leads to the conclusion that if
H is time-reversal symmetric, i.,eH=0OH® !, then the
where b=\(a,B8,y+1) and the components ofr  Hamiltonian matrix is purely real in thgM;)} basis, while
=(7y,7y,7,) are pseudospin Pauli matrices. At the sameif H is antisymmetric unde®, i.e.,H=—0OH® %, then the

time, the action of the single qubit rotation enteridg is Hamiltonian matrix is purely imaginary.
e Since H is real in the{|M;)} basis if and only ifH is
e ATy (35  time-reversal symmetric it follows that the unitary operator

U=exp—irH is self-transpose, i.ely=UT, if and only if H
is time-reversal symmetric.

Now consider a time-dependent pulse described by the
HamiltonianHp(t). We assume that p(t) is time-reversal
Zib. 42 (36) symmetric at all times, i.eHp(t)=OHp(t)® 1 for all t.

The corresponding unitary evolution operatbr which
is independent of3 and y if a=0. This condition has a evolves the system from tinmg to tr can be written as
simple geometric interpretation. It is the requirement that a .
rotation about an axis parallel to followed by a 180° ro- U= lim U(ty)U(ty-1)- - - U(t)U(ty), (42)
tation about thex axis, and then a repeat of the initial rotation N
must be equivalent to a simple 180° rotation aboutd¢hgis.  where
This will trivially be the case if the vectob=\(«a,8,y U(t;) = e 1atHR() (43)
+1) lies in theyz plane. Thus, ifa=0, this condition is
satisfied and the ControlledoT construction is exact. Con- With At=(tg—t,)/N andt;=t, andty=tg.
versely, ifa# 0 the construction is spoiled. SinceHp(t;) is time-reversal symmetric, the above argu-
ments implyUT(t))=U(t;) whenU(t;) is expressed in the
time-symmetric basi§|M;)}. Thus, in this basis, we have

Thus to show that the controlledsT construction is in-
dependent of3 and y if «=0 we need only show that the
product

—ib-7/2

e 7€

IV. TIME-REVERSAL SYMMETRY

In this section we prove the following general result. Any UT=lim [U(t\)U(ty-1)---U(t)U(t)]" (44
time-dependent Hamiltoniai p(t) which is time-reversal N=e
symmetric for allt, and for which the time dependence is

— im T T T T
itself symmetric, i.e.Hp(to—t)=Hp(to+1t) for all t, will = lim U (t)U ' (ty)---U (ty-1)U (ty)

generate a unitary evolution operatdr= exp—i whereH N (45)
is a time-independent effective Hamiltonian which is also

time-reversal symmetric. We then show that this theorem im- = lim U(t))U(t,) - - - U(ty_1)U(ty). (46)
plies that the parameter, which spoils the controlledoT N— o0
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For a time-symmetric pulselp(t;)=Hp(ty+1-;) and so all of which are eigenstates & with eigenvalue+1.
U(t;))=U(tns1-;)- This allows us to reverse the order of the  The matrix representation dfl,,, in the time-reversal

operators in Eq(46) which then implies invariant|To), |S,), |S,) basis is
uT=u. (47) V. 0 —2p
Thus if we writeU in terms of an effective Hamiltonian, Haw=| © 0 — 2ty (59)
U=e '™, (48 —2P —2t, Uy

the matrix elements dfl must be real in the time-symmetric which is real, reflecting the effective time-reversal symmetry
basis.H must therefore be time-reversal symmetric, it¢., of H,, . Note that this would not be the caseHf,, in-
=OHO . cluded the Zeeman coupling of electron spins to an external
To apply this theorem to the present problem we take thenagnetic field. While for typical field strengths the Zeeman
time-reversal operator for our two-electron system to be  coupling is smalf for some parameters it can be comparable
R to the spin-orbit corrections considered here. If this is the
O =e"ne K. (49 case our conclusions following from effective time-reversal

Here the antiunitary operatdt is defined so that when act- symmetry will no longer be valid. Of course in zero mag-
ing on a given state it takes the complex conjugate of thdetic field exact time-reversal symmetry is guaranteed.
amplitudes of that state when expressed in the Hund- We now consider pulsing a time dependehy(t) adia-
Mulliken basis defined in Sec. II. Note that this basis is con-Patically so that, according to the arguments of Sec. Ill, the
structed using the Fock-Darwin states, and if a magnetic fieldesulting gate can be parametrized by an effective spin
is present these states will be necessarily complex valuedamiltonian H. Since at all timest the Hund-Mulliken
when expressed in the position basis. As defined here, thdamiltonian is time-reversal symmetric, if the pulse itself is
antiunitary operatoK only takes the complex conjugates of time symmetric, i.e.Hyy(t) =Hyu(—t) where we take the
the amplitudes in the Hund-Mulliken basis does not take ~center of the pulse to be &t=0, then the above theorem
the complex conjugate of the Fock-Darwin states themselve#nplies that the effective spin Hamiltoniad will also be
Thus, if a magnetic field is preser@, should be viewed as time-reversal symmetric. ThuHi=@HO*, and since
an effectivetime-reversal symmetry operator. This is a tech-0S,0 ~'=—S§, this impliesH must be quadratic in the spin
nical point which does not affect any of our conclusionsoperators, and sa=0. The resulting gate will therefore
(provided the Zeeman coupling can be ignored—see belowhave the desired forr®).
The key property that we will need in what follows is that ~ For completeness we also consider here the case of time-
spin changes sign under time reversal, and it is readily veriantisymmetric pulsing. IHp(t)=—Hp(—t) then
fied that for our definition o®,

U(t):efiAth(’[):eiAth(ft):U(_t)fll (59)

0S,0 '=-5, (50)
and the resulting quantum gate is
for u=A,B even in the presence of a magnetic field. 94 g
Under ®, the Hund-Mulliken basis states transform as U= lim U(t)U(ty) - - - U(tpp)U(tp) "L - -
follows, N—co
0|S)=1S) fori=1,23, (51 U(t,) tu(ty) =1 (60)
O|To)=—1To), (520  The net effect of any time-antisymmetric pulse is thus simply
the identity transformation.
O|T,)=|T_), (53
V. MODEL CALCULATIONS
0T )=|T,). (54

] i i We have seen from symmetry arguments that time-
The state$S;) therefore form a time-symmetric basis for the symmetric pulsing of an axially symmetric Hamiltonian,
singlet states. A time-symmetric basis for the triplet states ig,qp asH,,,, when f, and fr are constant, which is itself
given by time-reversal symmetric at all times, will automatically pro-
~ _ duce a gate of forn§2), provided the pulse is adiabatic so
IToy=1[To), (59 that the initial and final states of the system are in the four-
dimensional Hilbert space of two qubits. It is natural to then
~ 1 ask what the effect of the inevitable deviations from time-
Ta)= E(|T+>+|T*>)’ (56) symmetric pulsing will be on the resulting gate. To investi-
gate this we have performed some simple numerical simula-
. tions of coupled quantum dots.
|-”|-b>: '_(|-|-7>_ IT.)), (57) _ In our_calcul_ations, we imagine pulsing the dots b_y vary-
\/5 ing the dimensionless distandebetween them according to

115306-6



SPIN-ORBIT COUPLING AND TIME-REVERSA . ..

03 T

02

tH/(x)O

-15

FIG. 2. Time dependence of matrix elements appearing in the
Hund-Mulliken description of a double quantum dot when the dis-

placement of the dots is varied according to Efl) with dg=1.
Results are for GaAs parameters in zero magnetic field fwibl
=3 meV and are plotted vs the dimensionless quantityfor two
values of the time-asymmetry parametes 0 (solid line) andr
=0.1 (dashed ling

d(t)=do+

(61)

T+rt

Hered, is the distance at the point of closest approacls
a measure of the pulse duration, ands a dimensionless
measure of the time asymmetry of the pulse. This form de
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TABLE I. Symmetry properties of the pulse parameteends,
and gate parameteks «, 8, andy under parityP and time rever-
salT.

r ] N @ B
P + - + - -+
T - + + - + +

We fix the pulse widthr by requiring that if we turn off
spin-orbit coupling §=0) we obtain ax= /2 pulse, i.e., a
square root of swap. For the parameters used here we find
this corresponds to taking=23.9wy=5 ps. We have
checked that these pulses are well into the adiabatic regime.
The magnitudes of the matrix elements coupling singly oc-
cupied states to the doubly occupied stig) are on the
order of[(S;|U|S,)|~107% and|(T,|U|S,)|~s10 .

Once 7 is fixed, there are two parameters characterizing
each pulses andr, and four parameters characterizing the
resulting gate), «, B, andy. The transformation properties
of these parameters under patiB) and time reversdlT) are
summarized in Table I. These properties follow from the fact
that (i) under time reversas,— —S, andr— —r, while P
=slsoi is invariant, and(ii) under paritySy«< Sz and P—

— P, whiler is invariant. Note that, as defined in Sec. Il, the
parametesis positive. Here we allovg to change sign when
the direction of the vectoP is reversed, thus under parity
S— —S.

These symmetry properties imply thasiindr are small,
the parameters of the effective Hamiltonian will be given

scribes the generic behavior of any pulse for times near thapproximately by

pulse maximum {=0). Note that for largdt|, and forr
#0, the distancel(t) will saturate, and has a singularity for
negativet. We have takem to be small enough so that the
dots decouple long before this leads to any difficulty.

For our calculations, we work in zero magnetic field and
takefiwg=3 meV anddy,=1, corresponding ta=20 nm at

closest approach. The resulting time dependences of the pa-

rameters irH ), are shown in Fig. 2. Note that the spin-orbit
matrix element plotted in this figure Igg, while the spin-

orbit matrix element appearing My, is P=slsoi, wheres

a=C,rs, (62)
B=Cgs, (63
y=C,s?, (64)
A=\o+C,5%, (65

is the dimensionless measure of Spin_orbit Coup"ng intro_Where the coefficients should be of order 1. For the pulseS we

duced in Sec. Il.

For a given pulseHyy(t) we integrate the time-
dependent Schdinger equation to obtain the evolution op-
eratorU for the full pulse. If the pulse is adiabatic then the
matrix elements o) which couple the singly occupied states
|S;) and|T,) to the doubly occupied stat&,) can be made
negligibly small® The quantum gate is then obtained by sim-
ply truncatingU to the 4<4 matrix acting on the two-qubit
Hilbert space. By taking the log of this matrix we obtain
tH=iIlnU and thus the parameters,«,3,y. Note that
when calculating ItJ, there are branch cuts associated with
each eigenvalue ofJ, and as a consequenced is not

consider here\g= 7/2.

The results of our calculations are shown in Fig. 3. Each
point corresponds to a separate numerical run. The plots for
N\, B, and y show their dependence anwhenr=0. The
dependence of the parameteon pulse asymmetry is shown
by plotting a/s versus . For thes values we have studied, up
to |s|=0.1, the numerical results far/s are essentially in-
dependent of for a givenr. These results are clearly con-
sistent with the above symmetry analysis.

Now consider carrying out a controlledbT gate using
the scheme reviewed in Sec. lll. For this construction to
work it is necessary that= 77/2. In our calculations we have

uniquely determined. We resolve this ambiguity by requiringfixed 7 so that\ = /2 for s=r=0. Thus, when spin-orbit

that as the pulse height is reduced to zero Bngoes con-
tinuously to the identity thatH—0 without crossing any
branch cuts.

coupling is included

N=/2+ C, s2. (66)
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0,020 (——— L - ' special condition is therefore the ideal case to strive for ex-

perimentally in order to guarantee axially symmetric quan-
] tum gates.

@ 00 Even if perfect axial symmetry cannot be achieved, time-
] symmetric pulsing will still restrict the resulting gate to be
invariant under time reversal. Thus, up to an irrelevant over-

gl — all phase, this gate will necessarily have the form
-0.10 -0.05 0.00 0.05 0.10

0015

A-T/2

0.010

0.005

n " |
000-% 10 -0.05 0.00 0.05 .10
s

0000 — U=exp—iN(Sy-Sg+ B (SpXSg)+Su-II'-Sg). (68)
-0.005
Herell" is a symmetric tensor which will, in general, deviate
from the axial form of they term in Eq.(2) leading to cor-
rections to the controlledoT construction. However, be-
causell is even under parity it will still be second order in
N B spin-orbit coupling? and thus the deviations from E¢Q)
will also be second order. We conclude that even in the ab-
sence of exact axial symmetry, the corrections to the
A ontrollednoT construction will be second order in spin-
orbit coupling, rather than first order.

-0.010

> -0.015
-0.020

-0.025

-0. 03_%.

derived from pulses depicted in Fig. 2. The parameterg, andy

are shown as functions o for the caser=0 (time-symmetric
pulses. For « the quantitya/s is plotted vsr. We have verified that
the ratioa/s is essentially independent effor all values we have VI. CONCLUSIONS

considered |5|<0.1).
N ) In this paper we have studied spin-orbit corrections to

L exchange-based quantum gates, emphasizing symmetry argu-
In order to keepk=/2 it will therefore be necessary 10 mants |n particular, we have shown that adiabatic time-
adjust the pulse widthr slightly to correct for spin-orbit symmetric pulsing of any Hamiltonian whiofi) describes
effects. two well-defined spin-1/2 qubits at the beginning and end of
The central result of this paper is summarized by thepe nyise (i) is time-reversal symmetric at all times during
equation the pulse, andiii) is axially symmetric in spin space with a
fixed symmetry axis, will automatically produce a gate of
67) form (2). Together with single qubit rotations, for= /2
this gate can then be used in a simple Controlead-con-
struction. This result is quite general.
As shown in Sec. lll, any nonzer® will lead to corrections As a specific example we have studied a GaAs double
to the ControlledNoT construction. For time-symmetric quantum dot system within the Hund-Mulliken approxima-
pulsesr =0 and these corrections will vanish. Equati@Y)  tion. In this approximation spin-orbit coupling enters as a
can then be used to estimate the errors due to any time asyrsmall spin precession when an electron tunnels between dots.
metry of the pulse, and to put design restrictions on the al¥f the direction of this precession axis is constant throughout
lowed tolerance for such asymmetry. the pulse the resulting gate will be axially symmetric and
It is important to note that while the results presented herdave form Eq.(29). The deviation of this gate from the de-
are for a specific model, all of the key arguments are basesdired gatg?2) is then characterized by a single dimensionless
on symmetry and so are quite general. Given any timeparametera which spoils the ControlledtoT construction.
reversal invariant two-qubit system with axial symmetry, if Using symmetry arguments, as well as numerical calcula-
pulsed adiabatically in a time-symmetric way the resultingtions, we have shown thai=C_,sr wheres andr are, re-
gate will have form(2). spectively, dimensionless measures of spin-orbit coupling
While nearly perfect time-symmetric pulsing can presum-and time asymmetry of the pulse. Thus time-symmetric puls-
ably be achieved with sufficiently accurate pulse control, weng (r =0) ensures the anisotropic corrections will have the
expect that exact, or nearly exact, axial symmetry will bedesired form.
more difficult to realize. The results of this paper give some In any system without spatial inversion symmetry, spin-
useful design guidelines for achieving this goal. For ex-orbit coupling will inevitably lead to anisotropic corrections
ample, we have shown that within the Hund-Mulliken ap-to the exchange interaction between spins. According to cur-
proximation axial symmetry is maintained provided the ratiorent estimate&® fault-tolerant quantum computation will re-
fp/fr is kept constant throughout the pulse. As pointed ouguire realizing quantum gates with an accuracy of one part in
in Sec. lll, however, even if quantum dots can be engineered0*. Thus, even if spin-orbit coupling is weak, the design of
so that this is the case, corrections beyond the Hundany future quantum computer which uses the exchange inter-
Mulliken approximation will still, in general, lead to devia- action will have to take these anisotropic corrections into
tions from exact axial symmetry. Only when the special con-account. We believe the symmetry based analysis presented
dition fp==*fg is satisfied will the full Hamiltonian in this paper provides a useful framework for studying these
describing the system be axially symmetric. Achieving thiseffects.

a=C,rs.
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